3.1.23 \(\int \frac {1-x^3}{x (1-x^3+x^6)} \, dx\)

Optimal. Leaf size=41 \[ \frac {\tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}}-\frac {1}{6} \log \left (x^6-x^3+1\right )+\log (x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {1474, 800, 634, 618, 204, 628} \begin {gather*} -\frac {1}{6} \log \left (x^6-x^3+1\right )+\frac {\tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}}+\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x^3)/(x*(1 - x^3 + x^6)),x]

[Out]

ArcTan[(1 - 2*x^3)/Sqrt[3]]/(3*Sqrt[3]) + Log[x] - Log[1 - x^3 + x^6]/6

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1474

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
 Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a,
 b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1-x^3}{x \left (1-x^3+x^6\right )} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1-x}{x \left (1-x+x^2\right )} \, dx,x,x^3\right )\\ &=\frac {1}{3} \operatorname {Subst}\left (\int \left (\frac {1}{x}-\frac {x}{1-x+x^2}\right ) \, dx,x,x^3\right )\\ &=\log (x)-\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{1-x+x^2} \, dx,x,x^3\right )\\ &=\log (x)-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{1-x+x^2} \, dx,x,x^3\right )-\frac {1}{6} \operatorname {Subst}\left (\int \frac {-1+2 x}{1-x+x^2} \, dx,x,x^3\right )\\ &=\log (x)-\frac {1}{6} \log \left (1-x^3+x^6\right )+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x^3\right )\\ &=\frac {\tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}}+\log (x)-\frac {1}{6} \log \left (1-x^3+x^6\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 44, normalized size = 1.07 \begin {gather*} \log (x)-\frac {1}{3} \text {RootSum}\left [\text {$\#$1}^6-\text {$\#$1}^3+1\&,\frac {\text {$\#$1}^3 \log (x-\text {$\#$1})}{2 \text {$\#$1}^3-1}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^3)/(x*(1 - x^3 + x^6)),x]

[Out]

Log[x] - RootSum[1 - #1^3 + #1^6 & , (Log[x - #1]*#1^3)/(-1 + 2*#1^3) & ]/3

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1-x^3}{x \left (1-x^3+x^6\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(1 - x^3)/(x*(1 - x^3 + x^6)),x]

[Out]

IntegrateAlgebraic[(1 - x^3)/(x*(1 - x^3 + x^6)), x]

________________________________________________________________________________________

fricas [A]  time = 1.46, size = 34, normalized size = 0.83 \begin {gather*} -\frac {1}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) + \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+1)/x/(x^6-x^3+1),x, algorithm="fricas")

[Out]

-1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.59, size = 35, normalized size = 0.85 \begin {gather*} -\frac {1}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+1)/x/(x^6-x^3+1),x, algorithm="giac")

[Out]

-1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1) + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 35, normalized size = 0.85 \begin {gather*} -\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x^{3}-1\right ) \sqrt {3}}{3}\right )}{9}+\ln \relax (x )-\frac {\ln \left (x^{6}-x^{3}+1\right )}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^3+1)/x/(x^6-x^3+1),x)

[Out]

-1/6*ln(x^6-x^3+1)-1/9*3^(1/2)*arctan(1/3*(2*x^3-1)*3^(1/2))+ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.97, size = 38, normalized size = 0.93 \begin {gather*} -\frac {1}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) - \frac {1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) + \frac {1}{3} \, \log \left (x^{3}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^3+1)/x/(x^6-x^3+1),x, algorithm="maxima")

[Out]

-1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1) + 1/3*log(x^3)

________________________________________________________________________________________

mupad [B]  time = 1.86, size = 36, normalized size = 0.88 \begin {gather*} \ln \relax (x)-\frac {\ln \left (x^6-x^3+1\right )}{6}+\frac {\sqrt {3}\,\mathrm {atan}\left (\frac {\sqrt {3}}{3}-\frac {2\,\sqrt {3}\,x^3}{3}\right )}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^3 - 1)/(x*(x^6 - x^3 + 1)),x)

[Out]

log(x) - log(x^6 - x^3 + 1)/6 + (3^(1/2)*atan(3^(1/2)/3 - (2*3^(1/2)*x^3)/3))/9

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 41, normalized size = 1.00 \begin {gather*} \log {\relax (x )} - \frac {\log {\left (x^{6} - x^{3} + 1 \right )}}{6} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x^{3}}{3} - \frac {\sqrt {3}}{3} \right )}}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**3+1)/x/(x**6-x**3+1),x)

[Out]

log(x) - log(x**6 - x**3 + 1)/6 - sqrt(3)*atan(2*sqrt(3)*x**3/3 - sqrt(3)/3)/9

________________________________________________________________________________________